Adaptive Design Methods in Clinical Trials

Shein-Chung Chow, PhD

Professor Duke University School of Medicine Durham, NC 27705 sheinchung.chow@duke.edu

Mark Chang, PhD

Director Millennium Pharmaceuticals Cambridge, MA 02136 mark.chang@mpi.com

Outline

- What and why?
- Type of adaptive designs
- Regulatory/statistical perspectives
- Moving target population
- Statistical inference
- Concluding remarks

What Is Adaptive Design?

- There is no universal definition
 - Adaptive randomization, group sequential, and sample size re-estimation, etc.
 - Chow, Chang, and Pong (2005)
 - PhRMA (2006)
- Adaptive design is also known as
 - Flexible design (EMEA, 2002, 2006)
 - Attractive design (Uchida, 2006)

PhRMA's Definition

PhRMA (2006), J. Biopharm. Stati., 16 (3), 275-283.

An adaptive design is referred to as a clinical trial design that uses *accumulating data* to decide on how to *modify* aspects of the study as it *continues*, without undermining the *validity* and integrity of the trial.

PhRMA's Definition

- Characteristics
 - Adaptation is a design feature.
 - Changes are made "by design" not on an "ad hoc" basis.
- Comments
 - It does not reflect real practice.
 - It may not be flexible as it means to be.

Type of Adaptation

- Prospective adaptation
 - Adaptive randomization
 - Interim analysis
 - Stop trial early due to safety, futility/efficacy
 - Sample size re-estimation etc.
- Concurrent adaptation
 - Trial procedures
- Retrospective adaptation
 - Statistical procedures

Nature of Adaptation

- Prospective adaptation
 - By design
- Concurrent adaptation
 - Ad hoc
- Retrospective adaptation
 - Prior to database lock and/or unblinding

Adaptive Designs

- Adaptive randomization design
- Adaptive group sequential design
- N-adjustable design
- Drop-the-loser design
- Adaptive dose-escalation design
- Biomarker-adaptive design
- Adaptive treatment-switching design
- Adaptive-hypotheses design
- Adaptive seamless phase II/III trial design
- Any combinations of the above (multiple adaptive design)

Regulatory/Statistical Perspectives

- May introduce operational bias.
- May not be able to preserve type I error rate.
- P-values may not be correct.
- Confidence intervals may not be reliable.
- May result in a totally different trial that is unable to address the medical questions the original study intended to answer.

Implementation of Adaptation

- Prospective adaptation
 - By design
 - Study protocol
- Concurrent adaptation
 - Ad hoc
 - Protocol amendments
- Retrospective adaptation
 - Prior to database lock and/or unblinding
 - Statistical analysis plan

Practical Issues in Clinical Trials

- On average, for a given clinical trial, we may have 2-3 protocol amendments during the conduct of the trial.
- It is not uncommon to have 5-10 protocol amendments regardless the size of the trial.

Protocol Amendments

- Rationale for changes
 - Clinical
 - Statistical
- Review process
 - Internal protocol review
 - IRB
 - Regulatory agencies

- Has the disease under study
- Inclusion criteria to describe the target patient population
- Exclusion criteria to remove heterogeneity
- Subpopulations may be defined based on some baseline demographics and/or patient characteristics

- Denote target patient population by (μ, σ) , where μ and σ are population mean and standard deviation, respectively.
- After a modification made to the trial procedures, the target patient population lead to the actual patient population of

$$(\mu_{Actual}, \sigma_{Actual}) = (\mu + \varepsilon, C\sigma)$$

$$\frac{\left|\frac{\mu_{Actual}}{\sigma_{Actual}}\right| = \left|\frac{\mu + \varepsilon}{C\sigma}\right| = \left|\frac{\Delta\mu}{\sigma}\right| = \left|\Delta\right| \left|\frac{\mu}{\sigma}\right|,$$

where $\Delta = \frac{1 + \varepsilon / \mu}{C}$

- $\frac{\left|\frac{\mu}{\sigma}\right|}{\sigma}$ is usually referred to as the effect size
- The effect size after the modification made is inflated or reduced by the factor of Δ .
- "Clinically meaningful difference" may have been changed after the modification (adaptation) is made.

- Δ is referred to as a sensitivity index.
- When $\varepsilon = 0$ and C = 1 (i.e., there are no impact on the target patient population after the modifications made). In this case, we have $\Delta = 1$ (i.e., the sensitivity index is 1).

Sensitivity Index

- A shift in mean of the target patient population may be offset by the inflation (or reduction) of the variability, e.g.,
 - A shift of 10% (-10%) in mean could be offset by a 10% inflation (reduction) of variability
- Δ may not be sensitive due to the masking effect between \mathcal{E} and \mathcal{C} .

Moving Target Patient Population

Under the moving target patient population, the effect size is the original effect size times the sensitivity index, that is

$$\left|\frac{\mu_{Actual}}{\sigma_{Actual}}\right| = \left|\Delta\right| \left|\frac{\mu}{\sigma}\right|$$

How will this impact statistical inference?

Inference with Protocol Amendments

Chow SC and Shao J. (2005). J. Biopharm. Stat., 15, 659-666.

Model the population deviations due to protocol amendments using some covariates and develop a valid statistical inference procedure.

Inference with Protocol Amendments

 The idea is to relate the means before and after protocol amendments by means of some covariates. In other words,

$$\mu_k = f(x_k), k = 1, ..., m,$$

where μ_k and x_k are the mean and the corresponding covariate after the *kth* protocol amendment, *f* is a given function (linear or non-linear), and *m* is the number of protocol amendments.

Statistical Inference

- Notations
 - P_o : Target patient population
 - P_k : Patient population after the *kth* protocol amendment, k = 1, ..., m
 - μ_o : Target patient population mean
 - μ_k : Patient population mean after the *kth* protocol amendment

Statistical Inference

Assumption

 $\mu_k = \beta_0 + \beta' x_k$ k = 1, ..., mwhere β_0 is an unknown parameter, β is an unknown parameter vector whose dimension is the same as x, β' denotes the transpose of β , and x_k is the value of x under the *kth* amendment

Note that although μ₁,... μ_m are different from μ₀, the above assumption relates them with the covariate.

• First
$$\begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta} \end{pmatrix} = (X'WX)^{-1} X'W\overline{y}$$

where $\overline{y} = (\overline{y}_0, \overline{y}_1, ..., \overline{y}_m)'$, X is a matrix
whose *kth* row is $(1, x'_K)$, K=0,...,m, and W
is a diagonal matrix whose diagonal
elements are $n_0, n_1, ..., n_m$.

 An unbiased estimate of μ₀ can then be obtained as

$$\hat{\mu}_0 = \hat{\beta}_0 + \hat{\beta}' \mathbf{x}_0$$

- Assumptions
 - Conditional on the given protocol amendments, data from P_k are normally distributed with a common standard deviation σ .
 - Data from different $P_{k,s}$ are independent
- $\hat{\mu}_0$ is distributed as, $N(\mu_0, \sigma^2 C_0)$ where

 $C_{0} = (1, X_{0}) (X'WX)^{-1} (1, X_{0})'$

Thus, confidence interval for μ_0 can be obtained based on the t-statistic

I

$$t = \frac{\hat{\mu}_0 - \mu_0}{\sqrt{C_0 s^2}}$$

where

$$s^{2} = \sum_{k=0}^{m} \frac{(n_{k-1}) s_{k}^{2}}{N-m}$$

$$N = \sum_{k=0}^{m} n_k$$

When $P_{k,s}$ have different standard deviations and/or data from P_k are not normally distributed, we may consider the following approximation for large sample

$$\hat{\mu}_0 \sim N(\mu_0, r^2)$$
 ,

where

$$r^{2} = (1, x_{0}) (X'WX)^{-1} X'W \sum X (X'WX)^{-1} (1, x_{0})'$$

when Σ is the diagonal matrix whose *kth* diagonal element is the population variance of

$$P_k$$
 , $k=1...,m$

- Notations
 - C_K = a particular set of K protocol amendments
 - C = the collection of all possible protocol amendments indexed by 1, 2,..., M
- Thus $C_{K} = \{i_{1}, ..., i_{K}\} \in C = \{1, ..., M\}$
- C_{κ} is chosen based on a (random) decision rule ξ (adaptation rule)

- For a particular C_{κ} , let $Z_{C_{\kappa}}$ be the z-statistic. Also, let $L(Z_{C_{\kappa}} | \xi = C_{\kappa})$ be the conditional distribution of Z_{ξ} given $\xi = C_{\kappa}$.
- Suppose that $L(Z_{C_{\kappa}} | \xi = C_{\kappa})$ is approximately standard normal. We have

$$L(Z_{\xi}) = E\left[\sum_{C_{K} \in C} L(Z_{C_{K}} | \xi = C_{K}) I_{\xi = C_{K}}\right]$$

where $I_{\xi} = C_{K}$ is the indicator function of the set $\{\xi = C_{K}\}$

$$\begin{split} P\Big(Z_{C_{K}} \leq t \, \big| \xi = C_{K} \Big) &\to \Phi(t) \quad \text{a.s.} \\ \Rightarrow P\Big(Z_{C_{K}} \leq t \, \big| \xi = C_{K} \Big) I_{\xi=C_{K}} \to \Phi(t) I_{\xi=C_{K}} \quad \text{a.s.} \\ \Rightarrow E\Big[P\Big(Z_{C_{K}} \leq t \, \big| \xi = C_{K} \Big) I_{\xi=C_{K}} \Big] &\to E\Big(\Phi(t) I_{\xi=C_{K}} \Big) \\ &= \Phi(t) E\Big(I_{\xi=C_{K}} \Big) \\ &= \Phi(t) P\big(C_{K} \Big) \\ \Rightarrow P\Big(Z_{C_{K}} \leq t \Big) = \sum_{C_{K} \in C} E\Big[P\Big(Z_{C_{K}} \leq t \, \big| \xi = C_{K} \Big) I_{\xi=C_{K}} \Big] \\ &\to \sum_{C_{K} \in C} \Phi(t) P\big(C_{K} \big) = \Phi(t) \end{split}$$

Practical Issues

- In practice, covariates that will link the population means before and after protocol amendments may not exist or not observed.
- The impact of protocol amendments may be examined through the assessment of sensitivity index.

Concluding Remarks

- Clinical
 - Adaptive design reflects real clinical practice in clinical development.
 - Adaptive design is very attractive due to its flexibility and efficiency.
 - Potential use in early clinical development.
- Statistical
 - The use of adaptive methods in clinical development will make current good statistics practice even more complicated.
 - The validity of adaptive methods is not well established.

Concluding Remarks

- Regulatory
 - Regulatory agencies may not realize but the adaptive methods for review/approval of regulatory submissions have been employed for years - no scientific basis.
 - Guidelines regarding the use of adaptive methods are necessary developed.
- IDMC (Independent Data Monitoring Committee)
 - Independent data monitoring, administrative looks, and/or interim analyses.
 - Integrity and validity of the trial